Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.071
Filtrar
1.
Environ Sci Pollut Res Int ; 31(5): 8186-8209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38175510

RESUMO

Industrial units based on chemical processes-the textile and paper industries-are major sources of chlorophenols in the environment, and chlorophenolic compounds persist within the environment for a long time with high toxicity levels. The photo-assisted Fenton's and photocatalysis processes were investigated for the degradation of chlorophenols in the present study. Response surface methodology was employed to get optimised conditions for photocatalysis and photo-Fenton process-governing factors, thus, yielding a profound removal efficiency. Under optimised conditions, with a photocatalyst dose of 0.2 g/L, oxidant concentration of 10.0 mM and pH 5.0, complete removal of 2,4-dichlorophenol (2,4-DCP) was observed in 210 minutes in photocatalytic treatment. In the case of the photo-Fenton process, at an H2O2 dose of 5.0 mM and Fe2+ concentration of 0.5 mM, the organic pollutant was eliminated within 5 minutes of reaction time under acidic conditions (pH 3.0). The RSM model reported the perfect fit of experimental data with the predicted response. Among different isotherm models, the Langmuir isotherm was the best fit. The process followed pseudo-first order rate kinetics among various kinetics models. For the obtained optimised conditions, sonication and solar energy-driven processes were incorporated to study enhanced mineralisation. The solar-assisted Fenton process reported maximum mineralisation (90%) and cost-effective ($0.01/litre for 100 mg/L 2,4-DCP) treatment among different hybrid oxidation processes. The work provides insight into harnessing the naturally available solar energy, reducing the overall treatment cost and opting for a sustainable treatment method.


Assuntos
Clorofenóis , Energia Solar , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Ferro/química , Quimiometria , Oxirredução , Clorofenóis/química
2.
Microb Cell Fact ; 22(1): 220, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880695

RESUMO

BACKGROUND: Normally, a salt amount greater than 3.5% (w/v) is defined as hypersaline. Large amounts of hypersaline wastewater containing organic pollutants need to be treated before it can be discharged into the environment. The most critical aspect of the biological treatment of saline wastewater is the inhibitory/toxic effect exerted on bacterial metabolism by high salt concentrations. Although efforts have been dedicated to improving the performance through the use of salt-tolerant or halophilic bacteria, the diversities of the strains and the range of substrate spectrum remain limited, especially in chlorophenol wastewater treatment. RESULTS: In this study, a salt-tolerant chlorophenol-degrading strain was generated from Rhodococcus rhodochrous DSM6263, an original aniline degrader, by adaptive laboratory evolution. The evolved strain R. rhodochrous CP-8 could tolerant 8% NaCl with 4-chlorophenol degradation capacity. The synonymous mutation in phosphodiesterase of strain CP-8 may retard the hydrolysis of cyclic adenosine monophosphate (cAMP), which is a key factor reported in the osmoregulation. The experimentally verified up-regulation of intracellular cAMP level in the evolved strain CP-8 contributes to the improvement of growth phenotype under high osmotic condition. Additionally, a point mutant of the catechol 1,2-dioxygenase, CatAN211S, was revealed to show the 1.9-fold increment on activity, which the mechanism was well explained by molecular docking analysis. CONCLUSIONS: This study developed one chlorophenol-degrading strain with extraordinary capacity of salt tolerance, which showed great application potential in hypersaline chlorophenol wastewater treatment. The synonymous mutation in phosphodiesterase resulted in the change of intracellular cAMP concentration and then increase the osmotic tolerance in the evolved strain. The catechol 1,2-dioxygenase mutant with improved activity also facilitated chlorophenol removal since it is the key enzyme in the degradation pathway.


Assuntos
Clorofenóis , Dioxigenases , Rhodococcus , Catecol 1,2-Dioxigenase/metabolismo , Águas Residuárias , Biodegradação Ambiental , Simulação de Acoplamento Molecular , Rhodococcus/metabolismo , Clorofenóis/química , Clorofenóis/metabolismo , Diester Fosfórico Hidrolases/metabolismo
3.
Chemosphere ; 345: 140418, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844702

RESUMO

Carbon-integrated binary metal oxide semiconductors have gained prominence in the last decade as a better material for photocatalytic wastewater treatment technology. In this regard, this research describes the investigation of the binary metal oxide TiO2@Fe3O4 embedded on reduced graphene oxide (rGO) nanosheets synthesized through a combination of sol-gel, chemical precipitation, and Hummer's processes. Besides, the catalyst is applied for the photocatalytic degradation of organic chlorophenol pollutants. The characterized diffraction results showed the peak broadening of the rGO-TiO2@Fe3O4 composite formed with tetragonal and cubic structures having small crystallite sizes. The TEM observation shows an enormous miniature of TiO2@Fe3O4 nanospheres spread on the folded 2D-rGO nanosheets with a large BET surface area. The XPS result holds the mixed phases of Fe3O4 and Fe2O3. Finally, the catalyst demonstrated a low band gap with extended light absorption towards visible light irradiation. The synergistic interactions between Fe3+ and Fe2+ improved the visible light activity due to the incorporation of rGO, and also possessed good recycling capacity. The increased mobility of electrons at the interfaces of TiO2 and Fe3O4 due to the mixing of rGO results in the separation of charge carriers by elevating the photocatalytic degradation efficiency of chlorophenol.


Assuntos
Clorofenóis , Grafite , Águas Residuárias , Grafite/química , Luz , Óxidos/química , Clorofenóis/química , Catálise
4.
Environ Res ; 238(Pt 1): 117169, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722578

RESUMO

The porous structure of biochar, its large surface area, and its anti-oxidant properties are extensively used for pollutant removal strategies. The literature to date has reported that the biochar assisted metal-oxide core-shells have a dominating degradation ability under solar irradiation. Therefore, this study is significantly focused on cinnamon biochar as an active anti-oxidant agent incorporated in titania-cobalt ferrite nanocore-shell (Biochar/TiO2/CoFe2O4) structures for the first time in wastewater treatment against chlorophenol pollutants. Pure materials, core-shells, and biochar aided composites were synthesized by chemical methods, and their characteristics were analyzed using various instrumentation techniques. The diffraction outcomes of Biochar/TiO2/CoFe2O4 showed the mixed phases containing biochar, TiO2, and CoFe2O4. The morphological characteristics revealed that the biochar creates porosity and a peripheral layer covering the core-shell. Meanwhile, absorption studies of TiO2/CoFe2O4 core-shell and Biochar/TiO2/CoFe2O4 samples achieved 65% and 92% degradation efficiencies when exposed to visible light against chlorophenol pollutants, respectively. All these results confirm the presence of distinct functional groups as well as the combined synergistic effects that activated the charge separation, resulting in the successful destruction of water pollutants. In addition, the highly efficient Biochar/TiO2/CoFe2O4 sample was recycled, and the efficiency was maintained stable for five repeated degradation processes. Thus, Biochar/TiO2/CoFe2O4 will be utilized to expand the possibilities for biofuel generation and energy storage devices.


Assuntos
Clorofenóis , Poluentes Ambientais , Purificação da Água , Antioxidantes , Clorofenóis/química , Purificação da Água/métodos
5.
Environ Sci Pollut Res Int ; 30(48): 104976-104997, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723389

RESUMO

Persistent organic pollutants (POPs) including chlorophenols (CPs) are increasing in water effluents, creating serious problems for both aquatic and terrestrial lives. Several research attempts have considered the removal of CPs by functionalised nanomaterials as adsorbents and catalysts. Besides the unique crystal structure, spinel ferrite nanomaterials (SFNs) own interesting optical and magnetic properties that give them the potential to be utilised in the removal of different types of CPs. In this review, we highlighted the recent research work that focused on the application of SFNs in the removal of different CP substances based on the number of chlorine atom attached to the phenolic compound. We have also discussed the structure and properties of SFN along with their numerous characterisation tools. We demonstrated the importance of identifying the structure, surface area, porosity, optical properties, etc. in the efficiency of the SFN during the CP removal process. The reviewed research efforts applied photocatalysis, wet peroxide oxidation (WPO), persulfate activated oxidation and adsorption. The studies presented different paths of enhancing the SFN ability to remove the CPs including doping (ion substitution), oxide composite structure and polymer composite structure. Experimental parameters such as temperature, dosage of CPs and SFN structure have shown to have a major effect in the CP removal efficiency. More attention is needed to investigate the different properties of SFN that can be tailored through different techniques and expected to have major role in the removal mechanism of CPs.


Assuntos
Clorofenóis , Nanopartículas , Poluentes Químicos da Água , Águas Residuárias , Clorofenóis/química , Adsorção , Poluentes Químicos da Água/análise
6.
Environ Sci Pollut Res Int ; 30(41): 93531-93545, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37507560

RESUMO

The growing concerns about water pollution have prompted researchers to explore new materials for remediating and purifying it. In recent years, there has been a focus on polysaccharides as eco-friendly polymers that exhibit high efficiency in removing chlorophenols from waste water. This study aims to develop a trifunctional polysaccharide structure using a biodegradable matrix. The chitosan/alginate-polyethyleneimine-phenyl-phosphonamidic acid (CHIT/ALG-PEIPPAA) matrix was employed for removing chlorophenols from water. The study carefully examined the impact of various physicochemical parameters such as pH, reaction time, chlorophenols concentration, temperature, and ionic strength to determine the optimal conditions for the adsorption process. Several techniques were used to confirm the morphology, physicochemical properties, structure, and functionalization of the polymer. Scanning electron microscopy (SEM) images revealed a heterogeneous morphology with agglomerates of different particle sizes, ranging from a few micrometers with irregular shapes. The FTIR spectrum and zeta potential characterization indicated the presence of hydrophilic groups and a highly positive charge (around 31.4 mV) on the surface of the CHIT/ALG-PEIPPAA adsorbent. The optimal pH for chlorophenols removal was found to be approximately 4.4. The kinetic data supported the pseudo-second-order kinetic model, which accurately described the adsorption behavior of both chlorophenol molecules. The fitting of the isotherm analysis revealed that the Langmuir model provided a better representation of the adsorption process. The maximum adsorption capacities for 4-chlorophenol and 2,4-chlorophenol were approximately 118 mg.g-1 and 249 mg.g-1, respectively. The calculated thermodynamic functions confirmed an exothermic and spontaneous adsorption process for chlorophenols, with ∆H values of -6.98 kJ.mol-1 and -2.74 kJ.mol-1 for 4-chlorophenol and 2,4-chlorophenol, respectively. The regeneration process of the CHIT/ALG-PEIPPAA adsorbent showed higher efficacy in the presence of hydrochloric acid (2.0 mol.L-1), resulting in up to 91% desorption of chlorophenols. The CHIT/ALG-PEIPPAA adsorbent demonstrated good reusability after regeneration, with only a slight decrease in extraction efficiency: 34.63% for 4-chlorophenol and 79.03% for 2,4-chlorophenol, under the same optimal conditions as the initial adsorption cycle.


Assuntos
Clorofenóis , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Clorofenóis/química , Termodinâmica , Fenol/análise , Alginatos/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio
7.
Environ Res ; 236(Pt 2): 116790, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517483

RESUMO

The present study highlights the treatment of industrial effluent, which is one of the most life-threatening factors. Herein, for the first time, two types of NiO (green and black) photocatalysts were prepared by facile chemical precipitation and thermal decomposition methods separately. The synthesized NiO materials were demonstrated with various instrumental techniques for finding their characteristics. The X-ray diffraction studies (XRD) and X-ray photoelectron spectroscopy (XPS) revealed the presence of Ni2O3 in black NiO material. The transmission electron microscopic (TEM) images engrained the nanospherical shaped green NiO and nanoflower shaped black NiO/Ni2O3 materials. Further, the band gap of black NiO nanoflower was 2.9 eV compared to green NiO having 3.8 eV obtained from UV-vis spectroscopy. Meanwhile, both NiO catalysts were employed for visible light degradation, which yields a 60.3% efficiency of black NiO comparable to a 4.3% efficiency of green NiO within 180 min of exposure. The higher degrading efficiency of black NiO was due to the presence of Ni2O3 and the development of pores, which was evident from the Barrett-Joyner-Halenda (BJH) method. Type IV hysteresis was observed in black NiO nanoflowers with high surface area and pore size measurements. This black NiO/Ni2O3 synthesized from the thermal decomposition method has promoted better photocatalytic degradation of 4-chlorophenol upon exposure to visible light and is applicable for other industrial pollutants.


Assuntos
Clorofenóis , Luz , Clorofenóis/química , Análise Espectral , Catálise
8.
J Environ Manage ; 342: 118254, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295147

RESUMO

Chlorophenols represent one of the most abundant families of toxic pollutants emerging from various industrial manufacturing units. The toxicity of these chloroderivatives is proportional to the number and position of chlorine atoms on the benzene ring. In the aquatic environment, these pollutants accumulate in the tissues of living organisms, primarily in fishes, inducing mortality at an early embryonic stage. Contemplating the behaviour of such xenobiotics and their prevalence in different environmental components, it is crucial to understand the methods used to remove/degrade the chlorophenol from contaminated environment. The current review describes the different treatment methods and their mechanism towards the degradation of these pollutants. Both abiotic and biotic methods are investigated for the removal of chlorophenols. Chlorophenols are either degraded through photochemical reactions in the natural environment, or microbes, the most diverse communities on earth, perform various metabolic functions to detoxify the environment. Biological treatment is a slow process because of the more complex and stable structure of pollutants. Advanced Oxidation Processes are effective in degrading such organics with enhanced rate and efficiency. Based on their ability to generate hydroxyl radicals, source of energy, catalyst type, etc., different processes such as sonication, ozonation, photocatalysis, and Fenton's process are discussed for the treatment or remediation efficiency towards the degradation of chlorophenols. The review entails both advantages and limitations of treatment methods. The study also focuses on reclamation of chlorophenol-contaminated sites. Different remediation methods are discussed to restore the degraded ecosystem back in its natural condition.


Assuntos
Clorofenóis , Poluentes Ambientais , Poluentes Químicos da Água , Clorofenóis/química , Ecossistema , Poluentes Ambientais/química , Oxirredução , Poluentes Químicos da Água/metabolismo
9.
Int J Biol Macromol ; 243: 125276, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301344

RESUMO

In this work, the study of an oxidative-coupling reaction by immobilization of laccase or horseradish peroxidase (HRP) onto chitosan and sodium alginate was reported. The oxidative-coupling reaction of three recalcitrant organic pollutants (ROPs) such as chlorophenol compounds including 2,4-dichlorophenol (DCP), 2,4,6- trichlorophenol (TCP), pentachlorophenol (PCP) was studied. The results showed that the systems with immobilized laccase or horseradish peroxidase had broader range of optimum pH and temperature when compared to that of free laccase and horseradish peroxidase. The removal efficiencies of DCP, TCP and PCP within 6 h were found to be 77 %, 90 % and 83 %, respectively. The rate constants of the first order reactions for laccase were arranged as 0.30 h-1 (TCP) > 0.13 h-1 (DCP) > 0.11 h-1 (PCP) and the rate constants for HRP were arranged as 0.42 h-1 (TCP) > 0.32 h-1 (PCP) > 0.25 h-1 (DCP). The removal rate of TCP was found to be the highest among all and the removal efficiency of ROPs by HRP was always better than that of laccase. The major products of the reaction were identified by LC-MS and confirmed as humic-like polymers.


Assuntos
Quitosana , Clorofenóis , Poluentes Ambientais , Pentaclorofenol , Lacase/química , Alginatos , Clorofenóis/química , Peroxidase do Rábano Silvestre/química , Enzimas Imobilizadas/química
10.
Environ Sci Pollut Res Int ; 30(30): 75655-75667, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37222890

RESUMO

Photocatalytic degradation, as an advanced oxidation process (AOPs), offers a great advantage to target persistent organic pollutants (POPs) in water. RSM in the present study which is statistical means for optimizing processes like photocatalysis with minimum laboratory experimentation. RSM has a history of being a potent design experiment tool for creating new processes, modifying their designs, and optimizing their performances. Herein, a highly sought-after, easily preparable, visible-light active, copper bismuth oxide (CuBi2O4) is applied against a toxic emerging contaminant, 2,4-dichlorophenol (2,4-DCP) under an LED light source (viible light λ > 420 nm). A simple coprecipitation method was adopted to synthesize CuBi2O4 and later analyzed with FESEM, EDX, XRD, FTIR, and spectroscopy to determine its intrinsic properties. Principally, the photocatalytic degradation investigations were based on response surface methodology (RSM), which is a commanding tool in the optimization of the processes. The 2,4-DCP concentration (pollutant loading), CuBi2O4 dosage (catalyst dosge), contact time, and pH were the chosen as dependent factors, that were optimized. However, under optimal conditions, the CuBi2O4 nanoparticle showed a remarkable photocatalytic performance of 91.6% at pH = 11.0 with a pollutant concentration of 0.5 mg/L and a catalyst dose of 5 mg/L within 8 h. The obtained RSM model showed a satisfactory correlation between experimental and predicted values of 2,4-DCP removal, with an agreeable probability value (p) of 0.0069 and coefficient of regression (R2) of 0.990. It is therefore anticipated that the study may open up new possibilities for formulating a plan to specifically target these organic pollutants. In addition, CuBi2O4 possessed fair reusability for three-consequent cycles. Hence, the as-synthesized nanoparticles applied for photocatalysis foster a fit-for-purpose and reliable system in the decontamination of 2,4 DCP in environmental samples, and also the study highlights the efficient use of RSM for environmental remediation, particularly in AOP implementation.


Assuntos
Clorofenóis , Poluentes Ambientais , Água , Clorofenóis/química , Fenóis/química , Catálise
11.
Ecotoxicol Environ Saf ; 256: 114856, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37015188

RESUMO

Coexisting multi-pollutants like sulfonamides (SAs) and chlorophenols (CPs) in the ecological environment pose a potential risk to living organisms. The development of a strategy for the effective removal of multiple pollutants has become an urgent need. Herein, we systematically investigated the potential of immobilized bacterial laccase to remove chlorophenols (CPs), sulfonamides (SAs), and their mixtures. Laccase from Bacillus pumilus ZB1 was efficiently immobilized on chitin and its thermal stability, pH stability, and affinity to substrates were improved. Reusability assessment showed the immobilized laccase retained 75.5% of its initial activity after five cycles. The removal efficiency of CPs and SAs by immobilized laccase was significantly improved compared with that of free laccase. In particular, the removal of 2,4-dichlorophenol and 2,4,6-trichlorophenol reached 96.9% and 89.3% respectively within 8 h. The immobilized laccase could remove 63.70% of 2,4-dichlorophenol after four cycles. The degradation pathways of 2,4-dichlorophenol and sulfamethazine were proposed via LC/MS analysis. When the co-pollutants containing 2,4,6-trichlorophenol and sulfamethoxazole, immobilized laccase showed 100% removal of 2,4,6-trichlorophenol and 38.71% removal of sulfamethoxazole simultaneously. Cytotoxicity and phytotoxicity tests indicated that immobilized laccase can alleviate the toxicity of co-pollutants. The results demonstrate that chitin-based laccase immobilization can be an effective strategy for the removal of SAs, CPs, and their co-pollutants.


Assuntos
Clorofenóis , Poluentes Ambientais , Enzimas Imobilizadas/metabolismo , Lacase/metabolismo , Sulfonamidas , Quitina , Clorofenóis/química , Fenóis , Sulfanilamida , Sulfametoxazol
12.
Environ Res ; 216(Pt 1): 114477, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202244

RESUMO

Bioelectrochemical systems with biocathodes constitute a promising means to enhance the biological dechlorination of 2,4,6-trichlorophenol (2,4,6-TCP) in constructed wetland (CW) sediments. However, the effect of different cathodic potentials on the structure and function of 2,4,6-TCP-reducing biocathode communities in CW sediments is largely unknown. Here, we evaluated the performance and microbial community structure of 2,4,6-TCP-reducing biocathode systems at different cathodic potentials (- 0.5, - 0.7, - 0.9, and - 1.1 V vs. saturated calomel electrode). The dechlorination efficiency of 2,4,6-TCP with the biocathode relatively increased by 16.02%-33.17% compared to that in the open circuit. The highest 2,4,6-TCP dechlorination efficiency (92.34 ± 0.86%) was observed at - 0.7 V in sediment, which may be due to the highest abundance of functional genera (e.g., Pseudomonas, Spirochaeta) at - 0.7 V. Metagenomic analysis provided new insights into the metabolic potential of microorganisms in CW sediments and suggested possible 2,4,6-TCP conversion pathways in sediments. 2,4,6-TCP was gradually dechlorinated to form 4-chlorophenol, followed by a ring-opening step via the activities of chlorophenol reductive dehalogenase and oxygenase (e.g., cprA, tfdB). Interestingly, micro-electrical stimulation enhanced the expression of chlorophenol reductive dehalogenase (cprA). Therefore, our findings at the molecular and gene expression levels provide insights into the effects of different cathodic potentials on the performance and community structure of 2,4,6-TCP-reducing biocathode systems in CW sediments.


Assuntos
Clorofenóis , Microbiota , Clorofenóis/química , Eletrodos , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental
13.
Water Res ; 230: 119529, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36580804

RESUMO

Bioelectrochemical system (BES) can effectively promote the reductive dechlorination of chlorophenols (CPs). However, the complete degradation of CPs with sequential dechlorination and mineralization processes has rarely achieved from the BES. Here, a dual-working electrode BES was constructed and applied for the complete degradation of pentachlorophenol (PCP). Combined with DNA-stable isotope probing (DNA-SIP), the biofilms attached on the anodic and cathodic electrode in the BES were analyzed to explore the dechlorinating and mineralizing microorganisms. Results showed that PCP removal efficiency in the dual-working BES (84% for 21 days) was 4.1 and 4.7 times higher than those of conventional BESs with a single anodic or cathodic working electrode, respectively. Based on DNA-SIP and high-throughput sequencing analysis, the cathodic working electrode harbored the potential dechlorinators (Comamonas, Pseudomonas, Methylobacillus, and Dechlorosoma), and the anodic working enriched the potential intermediate mineralizing bacteria (Comamonas, Stenotrophomonas, and Geobacter), indicating that PCP could be completely degraded under the synergetic effect of these functional microorganisms. Besides, the potential autotrophic functional bacteria that might be involved in the PCP dechlorination were also identified by SIP labeled with 13C-NaHCO3. Our results proved that the dual-working BES could accelerate the complete degradation of PCP and enrich separately the functional microbial consortium for the PCP dechlorination and mineralization, which has broad potential for bioelectrochemical techniques in the treatment of wastewater contaminated with CPs or other halogenated organic compounds.


Assuntos
Clorofenóis , Pentaclorofenol , Pentaclorofenol/metabolismo , Anaerobiose , Clorofenóis/química , Bactérias/genética , Bactérias/metabolismo , DNA/metabolismo , Eletrodos , Biodegradação Ambiental
14.
Environ Sci Pollut Res Int ; 30(11): 31294-31308, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36445525

RESUMO

In this work, a novel adsorbent, activated carbon (PSAC) developed by the activation of pine sawdust's pyrolytic carbon (PSPC), is applied to adsorb 2,4-dichlorophenol (2,4-DCP) and 4-chlorophenol (4-CP). The optimized preparation conditions of PSAC were presented. The results revealed that equilibrium adsorption capacity (qe) of PSAC was notably enhanced up to threefold compared with PSPC. The adsorbents were characterized by a variety of techniques such as SEM, XRD, FT-IR, and elemental analysis. The key factors (such as adsorbent dosage, pH, salt concentration, temperature, and contact time) influencing the adsorption process were also studied. The adsorption quantities of PSAC for 2,4-DCP and 4-CP were 135.7 mg·g-1 and 77.3 mg·g-1, respectively. The equilibrium adsorption of 4-DCP and 4-CP was suitable to be predicted by the Freundlich and Koble-Corrigan models, while kinetic process was better described by the pseudo-second-order kinetic model and Elovich equation. The process was spontaneous. After repeated regeneration of PSAC with ethanol, the adsorption capacity of PSAC was not significantly reduced, indicating that PSAC can be recycled by regeneration after adsorption of 4-CP. This work provides a viable method to use activated carbon as an effective adsorbent for pollutant removal.


Assuntos
Clorofenóis , Poluentes Químicos da Água , Termodinâmica , Carvão Vegetal/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Clorofenóis/química , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
15.
J Hazard Mater ; 443(Pt B): 130268, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327830

RESUMO

Microporous organic networks (MONs) are a booming class of functional materials in elimination of environmental pollutants. However, the limit varieties of MONs still restrict their broad applications. Here we report the synthesis of a novel type of crown ether (CE)-based MONs via the coupling between brominated 18-crown-6 ether and different aromatic alkynyls. The constructed CE-based MONs integrates the good conjugation property of MONs and the inherent host-guest binding sites of CE, allowing the ultrafast and efficient adsorption and removal of a typical environmental priority pollutant 2,4,6-trichlorophenol (2,4,6-TCP). The hydrophobic CE-based MONs can also address the recovery challenge of unstable discrete CE in most organic and inorganic solvents. All CE-based MONs displayed fast adsorption kinetics (< 3 min) and large adsorption capacities (229.1-341.7 mg g-1) for 2,4,6-TCP. The CE-based MONs also gave stable adsorption capacities for 2,4,6-TCP in pH range of 4.0-6.0, NaCl concentration of 0-40 mg L-1, HA concentration of 0-30 mg L-1, or H2O2 ratio of < 5 %. Density functional theory calculation, Fourier transform infrared and X-ray photoelectron spectra evaluation revealed adsorption process involved hydrophobic, π-π and hydrogen bonding interactions. The CE-based MONs also showed favorable reusability and good adsorption for other toxic chlorophenols. This work highlights the potential of CE-based MONs in contaminants elimination.


Assuntos
Clorofenóis , Éteres de Coroa , Poluentes Ambientais , Poluentes Químicos da Água , Clorofenóis/química , Peróxido de Hidrogênio , Adsorção , Poluentes Ambientais/química , Poluentes Químicos da Água/análise
16.
Environ Res ; 214(Pt 2): 113889, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35843276

RESUMO

This study addresses the significance of wastewater recuperation by a simple and facile treatment process known as photocatalyst technology using visible light. Titanium di-oxide (TiO2) is the most promising photocatalyst ever since longing decades, has good activity under UV light, owing to its small band gap. Hence, TiO2 has been modified with metal oxides for the positive response against visible light. Since this is an efficient process, the novelty has been made on nanometal oxide CdO (cadmium oxide) combined with TiO2 to acquire the best efficiency of degrading organic chlorophenol contaminant. Initially, the composites were synthesized by sol-gel and thermal decomposition methods and investigated for their various outstanding properties. The characterized outcomes have exhibited heterostructures with reduced crystallite size from the X-ray diffraction studies. Then, the determination of nanoporous feature was recognized through HR-TEM analysis which was also detected with some dislocations. The EDX spectrum was identified the perfect elemental composition. The nitrogen adsorption-desorption equilibrium was attained that offers many pores measured with high surface area. The XPS result convinced that Ti3+ was accessible along with TIO2/CdO composite. Further the absorption towards higher wavelength was obtained from UV-vis spectra. Finally, for the photocatalytic application of chlorophenol, the composite shows higher percentage of degrading efficiencies than the pristine TiO2. The photocatalytic mechanism was discussed in detail.


Assuntos
Clorofenóis , Poluentes Ambientais , Nanoporos , Catálise , Clorofenóis/química , Óxidos/química , Titânio/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-35805809

RESUMO

A laccase named LAC-4 was purified from Ganoderma lucidum. Firstly, the enzymatic properties of purified LAC-4 laccase, and the degradation of three chlorophenol pollutants 2,6-dichlorophenol (2,6-DCP), 2,3,6-trichlorophenol (2,3,6-TCP) and 3-chlorophenol (3-CP) by LAC-4 were systematically studied. LAC-4 had a strong ability for 2,6-DCP and 2,3,6-TCP degradation. The degradation ability of LAC-4 to 3-CP was significantly lower than that of 2,6-DCP and 2,3,6-TCP. LAC-4 also had a good degradation effect on the chlorophenol mixture (2,6-DCP + 2,3,6-TCP). The results of kinetics of degradation of chlorophenols by LAC-4 suggested that the affinity of LAC-4 for 2,6-DCP was higher than 2,3,6-TCP. The catalytic efficiency and the catalytic rate of LAC-4 on 2,6-DCP were also significantly higher than 2,3,6-TCP. During degradation of 2,6-DCP and 2,3,6-TCP, LAC-4 had a strong tolerance for high concentrations of different metal salts (such as MnSO4, ZnSO4, Na2SO4, MgSO4, CuSO4, K2SO4) and organic solvents (such as ethylene glycol and glycerol). Next, detoxification of chlorophenols by LAC-4 was also systematically explored. LAC-4 treatment had a strong detoxification ability and a good detoxification effect on the phytotoxicity of individual chlorophenols (2,6-DCP, 2,3,6-TCP) and chlorophenol mixtures (2,6-DCP + 2,3,6-TCP). The phytotoxicities of 2,6-DCP, 2,3,6-TCP and chlorophenol mixtures (2,6-DCP + 2,3,6-TCP) treated with LAC-4 were considerably reduced or eliminated. Finally, we focused on the degradation mechanisms and pathways of 2,6-DCP and 2,3,6-TCP degradation by LAC-4. The putative transformation pathway of 2,6-DCP and 2,3,6-TCP catalyzed by laccase was revealed for the first time. The free radicals formed by LAC-4 oxidation of 2,6-DCP and 2,3,6-TCP produced dimers through polymerization. LAC-4 catalyzed the polymerization of 2,6-DCP and 2,3,6-TCP, forming dimer products. LAC-4 catalyzed 2,6-DCP into two main products: 2,6-dichloro-4-(2,6-dichlorophenoxy) phenol and 3,3',5,5'-tetrachloro-4,4'-dihydroxybiphenyl. LAC-4 catalyzed 2,3,6-TCP into two main products: 2,3,6-trichloro-4-(2,3,6-trichlorophenoxy) phenol and 2,2',3,3',5,5'-hexachloro-[1,1'-biphenyl]-4,4'-diol.


Assuntos
Clorofenóis , Reishi , Catálise , Clorofenóis/química , Cinética , Lacase/química , Reishi/metabolismo
18.
J Environ Sci (China) ; 117: 197-208, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725071

RESUMO

Despite the widespread occurrence of phenols in anthropogenic and natural compounds, their fate in reactions with hypochlorous acid (HOCl), one of the most common water treatment disinfectants, remains incompletely understood. To close this knowledge gap, this study investigated the formation of disinfection by-products (DBPs) in the reaction of free chlorine with seven para-substituted phenols. Based on the chemical structures of the DBPs and the reaction mechanisms leading to their formation, the DBPs were categorized into four groups: chlorophenols, coupling products, substituent reaction products, and ring cleavage products. In contrast to previous studies that investigated the formation of early-stage chlorophenols, the primary focus of this study was on the elucidation of novel ring cleavage products, in particular α, ß-unsaturated C4-dialdehydes, and C4-dicarboxylic acids, which, for the first time, were identified and quantified in this study. The molar yields of 2-butene-1,4-dial (BDA), one of the identified α, ß-unsaturated C4-dialdehydes, varied among the different phenolic compounds, reaching a maximum value of 10.4% for bisphenol S. Molar yields of 2-chloromaleic acid (Cl-MA), one of the identified C4-dicarboxylic acids, reached a maximum value of 30.5% for 4-hydroxy-phenylacetic acid under given conditions. 2,4,6-trichlorophenol (TCP) was shown to be an important intermediate of the parent phenols and the C4-ring cleavage products. Based on the temporal trends of α, ß-unsaturated C4-dialdehydes and C4-dicarboxylic acids, their formation is likely attributable to two separate ring cleavage pathways. Based on the obtained results, an overall transformation pathway for the reaction of para-substituted phenols with free chlorine leading to the formation of novel C4 ring cleavage products was proposed.


Assuntos
Clorofenóis , Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Cloro/química , Clorofenóis/química , Ácidos Dicarboxílicos , Desinfetantes/química , Desinfecção/métodos , Halogenação , Fenóis/química , Poluentes Químicos da Água/química
19.
Proc Natl Acad Sci U S A ; 119(21): e2122425119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35588450

RESUMO

Aryl chlorides are among the most versatile synthetic precursors, and yet inexpensive and benign chlorination techniques to produce them are underdeveloped. We propose a process to generate aryl chlorides by chloro-group transfer from chlorophenol pollutants to arenes during their mineralization, catalyzed by Cu(NO3)2/NaNO3 under aerobic conditions. A wide range of arene substrates have been chlorinated using this process. Mechanistic studies show that the Cu catalyst acts in cooperation with NOx species generated from the decomposition of NaNO3 to regulate the formation of chlorine radicals that mediate the chlorination of arenes together with the mineralization of chlorophenol. The selective formation of aryl chlorides with the concomitant degradation of toxic chlorophenol pollutants represents a new approach in environmental pollutant detoxication. A reduction in the use of traditional chlorination reagents provides another (indirect) benefit of this procedure.


Assuntos
Cloretos , Clorofenóis , Poluentes Ambientais , Poluentes Químicos da Água , Catálise , Cloretos/síntese química , Clorofenóis/química , Clorofenóis/toxicidade , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Halogenação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
20.
Environ Sci Pollut Res Int ; 29(48): 72764-72776, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35614350

RESUMO

Goethite and lepidocrocite, as the main compositions of pipe deposits in the water distribution network, could be used as a catalyst for advanced oxidation processes (AOPs). This research utilizes them to activate PDS/H2O2 and PMS/H2O2 degrading the 2,4,6-trichlorophenol, respectively. To describe the incomplete degradation of pollutants and reflect the induction period, a modified first-order model has been proposed and used to analyze degradation differences under several key affecting factors. The results revealed that the PDS/H2O2 system has a synergy effect in the 2,4,6-trichlorophenol degradation process. The possible degradation pathways and intermediate products were confirmed by gas chromatograph-mass spectrometry (GC-MS). The paper provides a new idea for the effective use of pipe deposits to remove chlorophenols from drinking water, which is of great significance to ensure water quality safety.


Assuntos
Clorofenóis , Água Potável , Poluentes Ambientais , Poluentes Químicos da Água , Clorofenóis/química , Água Potável/análise , Poluentes Ambientais/análise , Compostos Férricos , Peróxido de Hidrogênio/química , Compostos de Ferro , Minerais , Oxidantes , Oxirredução , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...